New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy.

نویسندگان

  • C Rousselle
  • P Clair
  • J M Lefauconnier
  • M Kaczorek
  • J M Scherrmann
  • J Temsamani
چکیده

Many therapeutic drugs are excluded from entering the brain, due to their lack of transport through the blood-brain barrier (BBB). To overcome this problem, we have developed a novel method in which short, naturally derived peptides (16-18 amino acids) cross the cellular membranes of the BBB with high efficiency and without compromising its integrity. The antineoplastic agent doxorubicin (dox) was coupled covalently to two peptides, D-penetratin and SynB1. The ability of dox to cross the BBB was studied using an in situ rat brain perfusion technique and also by i.v. injection in mice. In the brain perfusion studies, we first confirmed the very low brain uptake of free radiolabeled dox because of the efflux activity of P-glycoprotein at the BBB. By contrast, we have demonstrated that when dox is coupled to either the D-penetratin or SynB1 vectors, its uptake was increased by a factor of 6, suggesting that the vectorized dox bypasses P-glycoprotein. Moreover, using a capillary depletion method, we have shown that vectorization of dox led to a 20-fold increase in the amount of dox transported into brain parenchyma. Intravenous administration of vectorized dox at a dose of 2.5 mg/kg in mice led to a significant increase in brain dox concentrations during the first 30 min of postadministration, compared with free dox. Additionally, vectorization led to a significant decrease of dox concentrations in the heart. In summary, our results establish that the two peptide vectors used in this study enhance the delivery of dox across the BBB.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced delivery of doxorubicin into the brain via a peptide-vector-mediated strategy: saturation kinetics and specificity.

Doxorubicin delivery to the brain is often restricted because of the poor transport of this therapeutic molecule through the blood-brain barrier (BBB). To overcome this problem, we have recently developed a technology, Pep:trans, based on short natural-derived peptides that are able to cross efficiently the BBB without compromising its integrity. In this study, we have used the in situ mouse br...

متن کامل

Improved brain uptake and pharmacological activity of dalargin using a peptide-vector-mediated strategy.

The blood-brain barrier restricts the passage of substances into the brain. Neuropeptides, such as enkephalins, cannot be delivered into the brain when given systemically because of this barrier. Therefore, there is a need to develop efficient transport systems to deliver these drugs to the brain. Recently, we have demonstrated that conjugation of doxorubicin or penicillin to peptide vectors si...

متن کامل

c(RGDyK)-decorated Pluronic micelles for enhanced doxorubicin and paclitaxel delivery to brain glioma

Brain glioma therapy is an important challenge in oncology. Here, doxorubicin (DOX) and paclitaxel (PTX)-loaded cyclic arginine-glycine-aspartic acid peptide (c(RGDyK))-decorated Pluronic micelles (cyclic arginine-glycine-aspartic acid peptide-decorated Pluronic micelles loaded with doxorubicin and paclitaxel [RGD-PF-DP]) were designed as a potential targeted delivery system to enhance blood-br...

متن کامل

Synergistic Anti-Cancer Effects of Second-Generation Proteasome Inhibitor Carfilzomib with Doxorubicin and Dexamethasone Via p53-Mediated Apoptosis in Pre-B Acute Lymphoblastic Leukemia Cells

Background: The ubiquitin-proteasome system (UPS) plays a crucial role in regulating the levels and functions of a large number of proteins in the cell, which are important for cancer cell growth and survival. The proteasome is highly activated in B-cell precursor acute lymphoblastic leukemia (BCP-ALL), which is the most common malignancy in children. The attempt to inhibit proteasome as a ther...

متن کامل

P 154: The Role of Inflammation in the Seizure Occurrence

Most common hypotheses of seizure initiation are increased neural excitation, decreased inhibition or both. But, the conditions that lead to these activation states not to be clear yet. Recent studies challenge traditional concepts and indicate new evidence that a key epileptogenic process may actually begin in the blood vessel. Seizures could be initiate by a variety of insults to the brain, s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 57 4  شماره 

صفحات  -

تاریخ انتشار 2000